Skip to content

400+ Validation Studies

Evidence-based Simulation Training

Find here a selection of validation studies, the culmination of extensive research and rigorous validation processes providing evidence of the validity and reliability of our simulation technology, which helped pave the way for revolutionizing surgical education and training. Based on some of the studies we have established proficiency-based curricula which are integrated into our simulators.

 

 

Filter by Simulator

Construct Validity of a Virtual Reality Simulator for Surgical Training in Knee Arthroscopy Palet MJ et al, Cureus, May 25, 2021

Objective: Surgical techniques are learned gradually throughout an orthopedic residency. Training on real patients carries drawbacks such as limited access and elevated risk. Alternatively, surgical simulation allows residents to practice in a safe environment with greater access to standardized surgical tasks. Virtual reality simulators display images inside an artificial joint, often providing real-time haptic feedback to allow for realistic interaction. The objective of this study was to evaluate the construct validity of a virtual reality simulator for knee arthroscopy by analyzing the capacity of system parameters to distinguish between expert and novice surgeons.

Design: This comparative cross-sectional study contrasts the automated performance reports for novice and expert orthopedic surgeons after executing surgical tasks on the ARTHRO Mentor virtual reality simulator. Setting Surgical simulation center at the University of Chile Clinical Hospital, Santiago, Chile.

Participants: The novice group consisted of 20 second-year orthopedic and traumatology residents at the University of Chile School of Medicine. The expert group consisted of 10 experienced arthroscopic surgeons. All participants carried out standardized tasks in the knee arthroscopy virtual reality simulator. The median performance scores of the two groups were compared, and multivariate logistic regression was performed to assess the capacity of the system to discriminate between the two groups.

Results: Median performance on the vast majority of surgical tasks was superior for the expert group. The expert group had performance values equal to or higher than the novice group on 43 of the 44 variables recorded for the basic tasks and 74 of the 75 advanced task variables. The multivariate logistic regression analysis discriminated expert from novice users with 100% accuracy.

Conclusion: The virtual reality simulator for knee arthroscopy showed good construct validity, with performance metrics accurately discriminating between expert and novice users.

Read More...

The Learning Curves of a Validated Virtual Reality Hip Arthroscopy Simulator Bartlett JD et al, Archives of Orthopaedic and Trauma Surgery, 2020

Introduction: Decreases in trainees’ working hours, coupled with evidence of worse outcomes when hip arthroscopies are performed by inexperienced surgeons, mandate an additional means of training. Though virtual reality simulation has been adopted by other surgical specialties, its slow uptake in arthroscopic training is due to a lack of evidence as to its benefits. These benefits can be demonstrated through learning curves associated with simulator training—with practice reflecting increases in validated performance metrics.

Methods: Twenty-five medical students with no previous experience of hip arthroscopy completed seven weekly simulated arthroscopies of a healthy virtual hip joint using a 70° arthroscope in the supine position. Twelve targets were visualised within the central compartment, six via the anterior portal, three via the anterolateral portal and three via the posterolateral portal. Task duration, number of collisions (bone and soft-tissue), and distance travelled by arthroscope were measured by the simulator for every session of each student.

Results: Learning curves were demonstrated by the students, with improvements in time taken, number of collisions (bone and soft-tissue), collision length and efficiency of movement (all p<0.01). Improvements in time taken, efficiency of movement and number of collisions with soft-tissue were first seen in session 3 and improvements in all other parameters were
seen in session 4. No differences were found after session 5 for time taken and length of soft-tissue collision. No differences in number of collisions (bone and soft-tissue), length of collisions with bone, and efficiency of movement were found after session 6.

Conclusions: The results of this study demonstrate learning curves for a hip arthroscopy simulator, with significant improvements seen after three sessions. All performance metrics were found to improved, demonstrating sufficient visuo-haptic consistency within the virtual environment, enabling individuals to develop basic arthroscopic skills.

Read More...

Arthroscopic Training Courses Improve Trainee Arthroscopy Skills: A Simulation-Based Prospective Trial Kevin D Martin, David P Patterson, Kenneth L Cameron, Arthroscopy 2016

Purpose: To evaluate the correlation between timed task performance on an arthroscopy shoulder simulator and participation in a standardized expert shoulder arthroscopy educational course.

Methods: Orthopaedic trainees were voluntarily recruited from over 25 residency programs throughout the United States and Canada. Each trainee was tested on arrival at the Arthroscopy Association of North America orthopaedic learning center on a virtual reality arthroscopy shoulder simulator, and his or her performance was objectively scored. Each trainee’s postgraduate year level was recorded, as was his or her experience in residency with shoulder arthroscopy as measured by Accreditation Council for Graduate Medical Education case-log totals. After the focused 4-day training curriculum consisting of didactics and cadaveric experience, each trainee was re-evaluated on the same simulator. Statistical analysis was performed to determine if participation in the course was associated with changes in simulation performance from before to after assessment.

Results: Forty-eight trainees completed the testing. On completion of the course, trainees showed significant improvements in all objective measures recorded by the simulator. Total probe distance needed to complete the task decreased by 42% (from 420.4 mm to 245.3 mm, P < .001), arthroscope tip distance traveled decreased by 59% (from 194.1 mm to
80.2 mm, P < .001), and time to completion decreased by 38% (from 66.8 seconds to 41.6 seconds, P < .001). Highly
significant improvements in all 3 measures suggest improved instrument handling, anatomic recognition, and
arthroscopy-related visual-spatial ability.

Conclusions: This study shows objective improvement in orthopaedic trainee basic arthroscopy skill and proficiency after a standardized 4-day arthroscopy training curriculum. The results validate the Arthroscopy Association of North America resident training course and its curriculum with objective evidence of benefit. Level of Evidence: Level III, prospective study of nonconsecutive participants.

Read More...

Arthroscopic Training Courses Improve Trainee Arthroscopy Skills: A Simulation-Based Prospective Trial Martin KD et al, Arthroscopy, March 2016

Purpose: To evaluate the correlation between timed task performance on an arthroscopy shoulder simulator and participation in a standardized expert shoulder arthroscopy educational course.

Methods: Orthopaedic trainees were voluntarily recruited from over 25 residency programs throughout the United States and Canada. Each trainee was tested on arrival at the Arthroscopy Association of North America orthopaedic learning center on a virtual reality arthroscopy shoulder simulator, and his or her performance was objectively scored. Each trainee’s postgraduate year level was recorded, as was his or her experience in residency with shoulder arthroscopy as measured by Accreditation Council for Graduate Medical Education case-log totals. After the focused 4-day training curriculum consisting of didactics and cadaveric experience, each trainee was re-evaluated on the same simulator. Statistical analysis was performed to determine if participation in the course was associated with changes in simulation performance from before to after assessment.

Results: Forty-eight trainees completed the testing. On completion of the course, trainees showed significant improvements in all objective measures recorded by the simulator. Total probe distance needed to complete the task decreased by 42% (from 420.4 mm to 245.3 mm, P < .001), arthroscope tip distance traveled decreased by 59% (from 194.1 mm to 80.2 mm, P < .001), and time to completion decreased by 38% (from 66.8 seconds to 41.6 seconds, P < .001). Highly significant improvements in all 3 measures suggest improved instrument handling, anatomic recognition, and arthroscopy-related visual-spatial ability.

Conclusions: This study shows objective improvement in orthopaedic trainee basic arthroscopy skill and proficiency after a standardized 4-day arthroscopy training curriculum. The results validate the Arthroscopy Association of North America resident training course and its curriculum with objective evidence of benefit.

Level of evidence: Level III, prospective study of nonconsecutive participants.

Read More...

Arthroscopy Skills Development with a Surgical Simulator Rebolledo BJ et al, The American Journal of Sports Medicine, May 29, 2015

Background:  Surgical simulation has become increasingly relevant to orthopaedic surgery education and could translate to improved operating room proficiency in orthopaedic surgery trainees.

Purpose: To compare the arthroscopic performance of junior orthopaedic surgery residents who received training with a knee and shoulder arthroscopy surgical simulator with those who received didactic training.
Study Design: Controlled laboratory study.

Methods: Fourteen junior orthopaedic surgery residents at a single institution were randomized to receive knee and shoulder arthroscopy training with a surgical simulator (n = 8) or didactic lectures with arthroscopy models (n = 6). After their respective training, performance in diagnostic knee and shoulder arthroscopy was assessed using a cadaveric model. Time to completion and assessment of arthroscopic handling using a subjective injury grading index (scale, 1-10) was then used to evaluate performance
in final cadaveric testing.

Results: Orthopaedic surgery residents who trained with a surgical simulator outperformed the didactic-trained residents in shoulder arthroscopy by time to completion (–35%; P = .02) and injury grading index (–35%; P = .01). In addition, a trend toward improved performance of knee arthroscopy by the simulator-trained group was found by time to completion (–36%; P = .09) and injury grading index (P = .08).

Conclusion: In this study, junior orthopaedic surgery residents who trained with a surgical simulator demonstrated improved arthroscopic performance in both knee and shoulder arthroscopy. However, future validation of surgical simulator training for orthopaedic surgery residents remains warranted.

Clinical Relevance: Surgical skill development with an arthroscopy surgical simulator could translate to improved arthroscopy performance in the operating room.

Read More...

Skip to navigation